Перевод: со всех языков на русский

с русского на все языки

проблема управления

  • 1 control problem

    English-Russian information technology > control problem

  • 2 production control problem

    The English-Russian dictionary on reliability and quality control > production control problem

  • 3 control problem

    1) Математика: задача управления
    2) Вычислительная техника: проблема управления
    4) Контроль качества: проблема контроля

    Универсальный англо-русский словарь > control problem

  • 4 problem

    1. проблема (в информационных технологиях)
    2. проблема
    3. осложнение
    4. неисправность
    5. задача

     

    задача

    [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]]

    задача
    В самой общей «канонической» форме — логическое высказывание (см. Логические операции) вида: «Дано Y (т.е. заданные условия), требуется Ц (достижение некоторой цели)»; записывается: <Y; Ц>. Если известны только условия, но неизвестна цель, то высказывание <Y; -> образует неполную З., называемую ситуацией. В противоположном случае — тоже неполную задачу, называемую проблемой: <-; Ц>. См. также:, Задача управления, Планово-экономическая задача, Экономико-математическая задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    неисправность
    отказ в работе

    Состояние машины, характеризующееся неспособностью выполнять заданную функцию, исключая случаи проведения профилактического технического обслуживания, других запланированных действий или недостаток внешних ресурсов (например, отключение энергоснабжения).
    Примечание 1
    Неисправность часто является результатом повреждения самой машины, однако она может иметь место и без повреждения.
    Примечание 2
    На практике термины «неисправность», «отказ» и «повреждение» часто используются как синонимы.
    [ ГОСТ Р ИСО 12100-1:2007]

    неисправность

    Состояние оборудования, характеризуемое его неспособностью выполнять требуемую функцию, исключая профилактическое обслуживание или другие планово-предупредительные действия, а также исключая неспособность выполнять требуемую функцию из-за недостатка внешних ресурсов.
    Примечание - Неисправность часто является следствием отказа самого оборудования, но может существовать и без предварительного отказа.
    [ГОСТ ЕН 1070-2003]

    неисправность
    Состояние технического объекта (элемента), характеризуемое его неспособностью выполнять требуемую функцию, исключая периоды профилактического технического обслуживания или другие планово-предупредительные действия, или в результате недостатка внешних ресурсов.
    Примечания
    1 Неисправность является часто следствием отказа самого технического объекта, но может существовать и без предварительного отказа.
    2 Английский термин «fault» и его определение идентичны данному в МЭК 60050-191 (МЭС 191-05-01) [1]. В машиностроении чаще применяют французский термин «defaut» или немецкий термин «Fehler», чем термины «panne» и «Fehlzusstand», которые употребляют с этим определением.
    [ ГОСТ Р ИСО 13849-1-2003]

    Тематики

    EN

    DE

    FR

     

    осложнение
    затруднение


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    проблема
    вопрос
    задача
    трудность
    ошибка


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    проблема (в информационных технологиях)
    (ITIL Service Operation)
    Причина одного или нескольких Инцидентов. Обычно при создании записи о проблеме причина неизвестна, и за дальнейшее её расследование отвечает процесс управления проблемами.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    problem
    (ITIL Service Operation)
    A cause of one or more incidents. The cause is not usually known at the time a problem record is created, and the problem management process is responsible for further investigation.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    2.8 проблема (problem): Неизвестная основная причина одного или нескольких инцидентов.

    Источник: ГОСТ Р ИСО/МЭК 20000-1-2010: Информационная технология. Менеджмент услуг. Часть 1. Спецификация оригинал документа

    проблема (problem): Сущность теоретической или практической (диагностической, лечебной, профилактической, исследовательской и др.) медицинской задачи, решаемой относительно пациента, по которой произведена оценка и инициирован план лечения или вмешательство [30].

    Примечание - Во многих связанных со здоровьем профессиях, особенно в социальных и психологических дисциплинах, вместо термина «problem» часто используется термин «issue». Кроме того, при описании состояния беременности и других, не являющихся болезнью, состояний здоровья, которые, тем не менее, требуют обращения к системе здравоохранения, иногда используется термин «condition».

    Источник: ГОСТ Р ИСО/ТС 18308-2008: Информатизация здоровья. Требования к архитектуре электронного учета здоровья

    Англо-русский словарь нормативно-технической терминологии > problem

  • 5 key

    [̈ɪki:]
    activate key вчт. пусковая кнопка key муз. ключ; тональность; major (minor) key мажорный (минорный) тон; all in the same key монотонно, однообразно alphabetic key вчт. буквенная клавиша arrow key вчт. клавиша со стрелкой arrow key вчт. клавиша управления курсором ascending key вчт. возрастающий ключ auxiliary key вчт. вторичный ключ backspace key вчт. клавиша возврата на одну позицию break key вчт. клавиша прерывания built-in key вчт. встроенный ключ cancel key вчт. клавиша сброса carriage return key вчт. клавиша возврата каретки chained key вчт. сцепленный ключ character key вчт. клавиша знака check key вчт. клавиша контрольного рестарта программы clear key вчт. клавиша гашения coding key вчт. ключ кодирования compound key вчт. составной ключ concatenated key вчт. сцепленный ключ confirmation key вчт. ключ подтверждения control key вчт. управляющая клавиша cursor control key вчт. клавиша управления курсором cursor movement key вчт. клавиша управления курсором data-base key вчт. ключ базы данных dead key вчт. слепая клавиша descending key вчт. убывающий ключ distribution key код распределения down arrow key вчт. клавиша "стрелка вниз" editing key вчт. клавиша редактирования encription key вчт. ключ шифрования entity key вчт. объектный ключ erase key вчт. клавиша стирания escape key вчт. клавиша выхода external key вчт. внешний ключ extra key вчт. дополнительный ключ key ключ; false key отмычка fast key вчт. клавиша быстрого перемещения курсора foreign key вчт. внешний ключ function key вчт. функциональная клавиша generic control key вчт. общая управляющая клавиша generic key вчт. общий ключ golden (или silver) key взятка, подкуп; the power of the keys папская власть; to have (или to get) the key of the street шутл. остаться на ночь без крова; быть выставленным за дверь halt key вчт. клавиша останова golden (или silver) key взятка, подкуп; the power of the keys папская власть; to have (или to get) the key of the street шутл. остаться на ночь без крова; быть выставленным за дверь to hold the keys (of smth.) держать (что-л.) в своих руках, держать (что-л.) под контролем hot key вчт. функциональная клавиша initiate key вчт. пусковая кнопка interrupt key вчт. кнопка прерывания key важный key ведущий key тех. заклинивать; закреплять шпонкой (часто key in, key on) key запирать на ключ key использовать условные обозначения (в объявлениях) key клавиша; pl клавиатура (рояля, пишущей машинки и т. п.) key вчт. клавиша key тех. клин; шпонка; чека key эл. ключ; кнопка; рычажный переключатель; telegraph key телеграфный ключ key муз. ключ; тональность; major (minor) key мажорный (минорный) тон; all in the same key монотонно, однообразно key ключ, код key ключ, разгадка (к решению вопроса и т. п.) key ключ; false key отмычка key ключ key вчт. ключевой key ключевой key кнопка key муз. настраивать (тж. key up) key attr. основной, ключевой; ведущий, командный; главный; key industries ведущие отрасли промышленности; key positions командные позиции; key problem основная, узловая проблема; key actor амер. ведущий актер key основной key основной принцип key полигр. основной принцип key отмель, риф key вчт. переключатель key подстрочный перевод; сборник решений задач; ключ к упражнениям key приводить в соответствие key тел., радио. работать ключом key жив. тон, оттенок (о краске) key тон, высота голоса; to speak in a high (low) key громко (тихо) разговаривать key указание к решению key attr. основной, ключевой; ведущий, командный; главный; key industries ведущие отрасли промышленности; key positions командные позиции; key problem основная, узловая проблема; key actor амер. ведущий актер key in вчт. печатать key attr. основной, ключевой; ведущий, командный; главный; key industries ведущие отрасли промышленности; key positions командные позиции; key problem основная, узловая проблема; key actor амер. ведущий актер key line амер. заголовок в одну строку key man опытный специалист key man амер. телеграфист key man человек, занимающий ведущий пост, играющий важнейшую роль (в политике, промышленности) key map контурная карта key money дополнительная плата, взимаемая при продлении срока аренды; въездная плата при аренде квартиры key off вчт. выключать key off вчт. выключить key on вчт. включать key on вчт. включить key out вчт. выключать key out вчт. выключить key pattern меандр pattern: key key вчт. комбинация клавиш key point воен. важный (в тактическом отношении) пункт key attr. основной, ключевой; ведущий, командный; главный; key industries ведущие отрасли промышленности; key positions командные позиции; key problem основная, узловая проблема; key actor амер. ведущий актер key attr. основной, ключевой; ведущий, командный; главный; key industries ведущие отрасли промышленности; key positions командные позиции; key problem основная, узловая проблема; key actor амер. ведущий актер key up возбуждать, взвинчивать (кого-л.) key up повышать (спрос и т. п.) key up придавать решимость, смелость labeled key вчт. маркироавнная клавиша left arrow key вчт. клавиша движения курсора влево load key вчт. кнопка ввода locate key вчт. установочная клавиша key муз. ключ; тональность; major (minor) key мажорный (минорный) тон; all in the same key монотонно, однообразно major key вчт. главный ключ memory key вчт. ключ памяти mouse key вчт. кнопка мыши nonpresent key вчт. отсутствующий ключ nonunique key вчт. неуникальный ключ pass key вчт. пароль golden (или silver) key взятка, подкуп; the power of the keys папская власть; to have (или to get) the key of the street шутл. остаться на ночь без крова; быть выставленным за дверь press any key вчт. нажмите любую клавишу press key вчт. нажмите клавишу primary key вчт. первичный ключ privacy key вчт. ключ секретности programmed key вчт. программируемая клавиша protection key вчт. ключ защиты relation key вчт. ключ отношения repeat-action key клавиша повторения операции reset key вчт. клавиша перезагрузки return key вчт. клавиша возврат каретки right arrow key вчт. клавиша движения курсора вправо screen labeled key вчт. виртуальная клавиша search key вчт. ключ поиска secondary key вчт. вторичный ключ security key comp. защитная кнопка sequencing key вчт. ключ упорядочения shift key вчт. клавиша регистра shift lock key вчт. клавиша переключения регистра signaling key вчт. сигнальная клавиша skeleton key отмычка soft key вчт. программируемая клавиша sort key вчт. ключ сортировки sorting key вчт. ключ сортировки source key вчт. сходный ключ space key comp. клавиша пробела key тон, высота голоса; to speak in a high (low) key громко (тихо) разговаривать start key вчт. пусковая клавиша stop key вчт. кнопка останова storage key вчт. ключ памяти storage protection key вчт. ключ защиты памяти switch key вчт. переключатель system key вчт. системный ключ system utility key вчт. служебная системная клавиша tabulator key вчт. клавиша табуляции key эл. ключ; кнопка; рычажный переключатель; telegraph key телеграфный ключ unique key вчт. уникальный ключ unlabeled key вчт. слепая клавиша unmatched key вчт. несогласованный ключ up arrow key вчт. клавиша движения курсора вверх write key вчт. ключ записи

    English-Russian short dictionary > key

  • 6 alarm management

    1. управление аварийными сигналами

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > alarm management

  • 7 chief

    tʃi:f
    1. сущ.
    1) правитель;
    руководитель. глава, лидер;
    начальник;
    шеф (часто как обращение в разговорной речи) ;
    директор, заведующий the chief of partyлидер партии, руководитель партии chief of police Syn: boss, superior, head, authority, leader, ruler I
    2) вождь( рода, племени, клана, небольшого сообщества) Indian chief ≈ индейский вождь
    3) мор.;
    разг. капитан-лейтенант Syn: lieutenant commander
    4) верхняя часть геральдического щита $$$$ in chief а) во главе, на руководящем месте, посту ( часто в названиях титулов, должностей)
    2. прил.
    1) ведущий, главный, основной, руководящий, старший( о служебном положении, должности;
    используется в названиях многих должностных лиц) Chief Justiceпредседатель суда Chief Rabbi ≈ главный раввин Chief Constableначальник полиции Chief Engineerглавный инженер Syn: main, principal
    2) основной;
    базисный, важнейший, главный ( по своему значению, влиянию;
    о человеке и предмете) chief intimate ≈ лучший друг chief supporter ≈ основной сторонник chief reasons ≈ главные причины chief problemосновная проблема chief difficulty ≈ основная, главная трудность
    3. нареч.;
    архаич. главным образом, преимущественно Syn: chiefly, principally, in chief глава, руководитель;
    лидер;
    начальник, шеф;
    заведующий, директор - * of chemical corps( военное) начальник (управления) химических войск - fire * начальник пожарной команды - * of the hill (разговорное) "комендант горы" (лыжный спорт) - * of a library заведующий библиотекой, директор бибилиотеки - * of police начальник полиции, полицмейстер - * of the watch( морское) вахтенный командир - * of the court председатель суда - C. of Chaplains( военное) начальник службы военных священников;
    главный капеллан( разговорное) шеф, чиф (в обращении) вождь (племени, клана) ;
    властитель, повелитель - Red Indian * вождь индейского племени - robber * атаман разбойников - Hail to the C. "привет вождю" (марш при встрече президента США) (геральдика) верхняя часть щита (историческое) оброк;
    денежная феодальная подать > in * главным образом;
    (историческое) пожалованный сюзереном (о поместье) главный;
    руководящий;
    старший - * editor главный редактор - * engineer главный инженер;
    старший механик - * librarian заведующий библиотекой, директор библиотеки - * magistracy пост президента США или губернатора штата - * cameraman (кинематографический) главный оператор - C. Command( военное) главное командование - C. of Naval Staff начальник морского штаба (Великобритании) ;
    первый морской лорд - * officer( морское) старший начальник службы связи - * surgeon( военное) начальник медицинской службы - * medical officer( военное) старший офицер медицинской службы - * nurse старшая медсестра основной;
    важнейший, главный - * problem основная проблема, главный вопрос - * business основное занятие - * opposing force главные силы противника - * good (книжное) величайшее благо - * happiness (книжное) высшее блаженство - the * rivers of France главные реки Франции - the * news is printed on the second page самое важное сообщение напечатано на второй стрнанице - the * thing to remember is this прежде всего нужно запомнить следующее - the * thing to do основное, что нужно сделать - my * concern is... я больше всего озабочен тем, что... > * cook and bottle washer( пренебрежительное) доверенный слуга;
    человек на побегушках > * mourner самый близкий родственник или друг умершего (обыкн. овдовевший супруг) chief важнейший ~ вождь (племени, клана) ~ глава, руководитель;
    лидер;
    начальник;
    шеф;
    chief of police начальник полиции ~ глава ~ главный, руководящий ~ главный ~ директор ~ заведующий ~ начальник ~ основной;
    важнейший;
    chief problem основная проблема;
    chief wall капитальная стена ~ основной ~ руководитель ~ руководящий ~ старший Chief: Chief: Generalin ~ n(pl Generalsin ~) главнокомандующий ~ of communications руководитель отдела по связям ~ of department начальник отдела ~ глава, руководитель;
    лидер;
    начальник;
    шеф;
    chief of police начальник полиции ~ of police начальник полиции ~ of section начальник сектора ~ of staff начальник штаба ~ основной;
    важнейший;
    chief problem основная проблема;
    chief wall капитальная стена ~ основной;
    важнейший;
    chief problem основная проблема;
    chief wall капитальная стена executor in ~ главный судебный исполнитель

    Большой англо-русский и русско-английский словарь > chief

  • 8 ECC

    1. экспериментальный вычислительный комплекс
    2. Центр аварийного управления
    3. теплоноситель системы аварийного охлаждения активной зоны
    4. расширенный канал управления
    5. непрерывная изоляционная оболочка
    6. криптография в эллиптических кривых
    7. контур аварийного охлаждения активной зоны
    8. диспетчерский центр
    9. встроенный канал управления
    10. возможность контроля ошибок

     

    возможность контроля ошибок

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    встроенный канал управления
    Канал ECC обеспечивает логический операционный канал между сетевыми элементами NE. Физический канал, поддерживающий канал ECC, зависит от используемой технологии. (МСЭ-T G.7712/ Y.1703).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    диспетчерский центр
    диспетчерский пункт
    ДП


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    контур аварийного охлаждения активной зоны
    (ядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    криптография в эллиптических кривых
    Направление ассиметричного шифрования и ЭЦП.
    Например, структура группы может задана точками эллиптической кривой и для такой группы можно сформулировать проблему дискретного логарифма. Эта проблема считается трудноразрешимой и потому применяется для создания криптосистем.
    Пример: DSA для эллиптической кривой.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    непрерывная изоляционная оболочка

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    расширенный канал управления
    Канал управления оборудования DCME, используемый для объединения ресурсов с номерами IT больше, чем 240. Он может размещать восемь сообщений назначения /цикл (МСЭ-T G.768).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    теплоноситель системы аварийного охлаждения активной зоны
    (ядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    Центр аварийного управления

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    экспериментальный вычислительный комплекс

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > ECC

  • 9 GSE

    1. пакет инженерной графики GSE
    2. общее событие на подстанции
    3. общая проблема безопасности
    4. блок управления общим событием на подстанции

     

    блок управления общим событием на подстанции
    Поддерживает быстрое и надежное распределение данных во всей системе; одноранговый обмен информацией о двоичном состоянии IED-устройств, например сигнал об отключении
    [ ГОСТ Р МЭК 61850-7-2-2009]

     

     

     

     

    Тематики

    EN

     

    общая проблема безопасности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    пакет инженерной графики GSE
    Представляет собой библиотеку функций для языков С, Pascal, Fortran и обеспечивает высокую скорость построения качественных изображений на экране ПЭВМ.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > GSE

  • 10 switching technology

    1. технология коммутации

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > switching technology

  • 11 arc-proof low voltage switchgear and controlgear assembly

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > arc-proof low voltage switchgear and controlgear assembly

  • 12 arc-proof switchboard

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > arc-proof switchboard

  • 13 arc-proof switchgear

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > arc-proof switchgear

  • 14 arc-resistant switchgear

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > arc-resistant switchgear

  • 15 internal arc-proof switchgear and controlgear assemblу

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > internal arc-proof switchgear and controlgear assemblу

  • 16 allocation problem

    1) упр. проблема распределения ресурсов (как проблема, которую необходимо решить в ходе организации производства и управления предприятием)
    2) иссл. опер. задача распределения ресурсов, распределительная задача (класс экономико-математических задач, которые заключаются в поиске наилучшего распределения ресурсов, при котором либо максимизируется результат, либо минимизируются затраты)
    Syn:
    See:

    Англо-русский экономический словарь > allocation problem

  • 17 LAN

    1. шлюз ЛВС-Х.25
    2. модель расширенного канала
    3. многопортовый мост LAN-X.25
    4. локальная сеть (в электросвязи)
    5. локальная сеть
    6. локальная вычислительная сеть

     

    локальная вычислительная сеть
    ЛВС

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.
    Примечание
    Под небольшой территорией понимают здание, предприятие, учреждение
    [ ГОСТ 24402-88]
    [ ГОСТ 29099-91]

    сеть локальная вычислительная
    Вычислительная сеть, объединяющая компьютеры или другие вычислительные средства, расположенные в одном или нескольких близстоящих зданиях (сооружениях).
    [РД 01.120.00-КТН-228-06]

    локальная вычислительная сеть
    Вычислительная сеть, которая обычно охватывает территорию в пределах одного здания или небольшого промышленного комплекса.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    локальная сеть
    Локальная сеть образуется соединением нескольких электронных устройств при помощи кабелей или технологий беспроводной связи, подключенных при помощи маршрутизаторов публичного доступа к глобальной (WAN) или городской сети (MAN). Локальной называют сеть малого или среднего масштаба (от 100 метров до 5 километров). Такие сети создаются в жилых домах, небольших офисах или в пределах территории, занимаемой компанией. Локальные сети считают частными сетями, поскольку для подключения к такой сети Ваш компьютер должен иметь к ней права доступа. Персональная вычислительная сеть (PAN) это особый случай локальной сети.
    [ http://www.sotovik.ru/lib/news_article/news_26322.html]

    FR


    Локальная вычислительная сеть (ЛВС, LAN – Local Area Network) – это совокупность аппаратного и программного обеспечения, позволяющего объединить компьютеры в единую распределенную систему обработки и хранения информации. К аппаратному обеспечению относятся компьютеры, с установленными в них сетевыми адаптерами, повторители, концентраторы, коммутаторы, мосты, маршрутизаторы и др., соединенные между собой при помощи кабельной системы или по беспроводному каналу. К программному обеспечению можно отнести сетевые операционные системы, системные и прикладные программы, использующие для сетевого взаимодействия соответствующие протоколы передачи информации. Расстояние между компьютерами объединяемыми в ЛВС обычно не превышает нескольких километров (термин "локальные сети"), что связано с затуханием электрического сигнала в кабелях. Технология виртуальных частных сетей (VPN – Virtual Private Network) позволяет через Internet и линии телекоммуникаций объединять в единую ЛВС несколько ЛВС, разнесенных на тысячи километров, однако это скорее именно объединение сетей, а сами ЛВС ограничены небольшим диаметром.

    Задачи, решаемые ЛВС:

    Передача файлов. Во-первых, экономится бумага и чернила принтера. Во-вторых, электрический сигнал по кабелю из отдела в отдел движется гораздо быстрее, чем любой сотрудник с документом. Он не болтает о футболе и не забывает в курилке важные документы. Кроме того, за электричество Вы платите гораздо меньше, чем зарплата курьера.
    Разделение (совместное использование) файлов данных и программ. Отпадает необходимость дублировать данные на каждом компьютере. В случае если данные бухгалтерии одновременно нужны дирекции, планово экономическому отделу и отделу маркетинга, то нет необходимости отнимать время и нервы у бухгалтера, отвлекая его от калькуляции себестоимости каждые три секунды. Кроме того, если бухгалтерию ведут несколько человек, то 20 независимых копий бухгалтерской программы и соответственно 20 копий главной книги (1 человек занимается зарплатой, 2-ой материалами и т.д.) создали бы большие трудности для совместной работы и невероятные трудности при попытке объединить все копии в одну. Сеть позволяет бухгалтерам работать с программой одновременно и видеть данные, вносимые друг другом.
    Разделение (совместное использование) принтеров и другого оборудования.
    Значительно экономятся средства на приобретение и ремонт техники, т.к. нет никакой необходимости устанавливать принтер у каждого компьютера, достаточно установить сетевой принтер.
    Электронная почта. Помимо экономии бумаги и оперативности доставки, исключается проблема "Был, но только что вышел. Зайдите (подождите) через полчаса", а также проблема "Мне не передали" и "А вы точно оставляли документы?". Когда бы занятый товарищ ни вернулся, письмо будет ждать его.
    Координация совместной работы. При совместном решении задач, каждый может оставаться на рабочем месте, но работать "в команде". Для менеджера проекта значительно упрощается задача контроля и координирования действий, т.к. сеть создает единое, легко наблюдаемое виртуальное пространство с большой скоростью взаимодействия территориально разнесенных участников.
    Упорядочивание делопроизводства, контроль доступа к информации, защита информации. Чем меньше потенциальных возможностей потерять (забыть, положить не в ту папку) документ, тем меньше таких случаев будет. В любом случае, гораздо легче найти документ на сервере (автоматический поиск, всегда известно авторство документа), чем в груде бумаг на столе. Сеть также позволяет проводить единую политику безопасности на предприятии, меньше полагаясь на сознательность сотрудников:
    всегда можно четко определить права доступа к документам и протоколировать все действия сотрудников.
    Стиль и престиж. Играют не последнюю роль, особенно в высокотехнологичных областях.

    [Ляхевич А.Г. Сетевые технологии и базы данных. Учебное пособие. Белорусский национальный технический университет.]

    Тематики

    Синонимы

    EN

     

    локальная сеть
    ЛВС

    Соединенные вместе скоростным каналом компьютеры и другие устройства, расположенные на незначительном удалении один от другого (комната, здание, предприятие) и управляемые специальной операционной системой. К локальным сетям подключаются различные устройства, включая серверы, рабочие станции, принтеры и др. Несколько ЛВС можно связать между собой в распределенную сеть. См. также Ethernet, FDDI, Token Ring, WAN. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    Синонимы

    EN

     

    локальная сеть
    Сеть передачи данных, охватывающая небольшую территорию (здание, предприятие) и использующая относительно короткие (не более 500 м) линии связи между объектами. Локальная сеть позволяет объединить между собой рабочие места пользователей и периферийные устройства в единую среду, работающую под управлением единой сетевой ОС. Короткие расстояния позволяют достичь высокоскоростной передачи данных (до 100 Мбит/с) и обеспечить предоставление широкого набора услуг в режиме реального времени. См. 100VG-AnyLAN, CLAN, HIPERLAN, ISLAN, MAN, peer-topeer-, switched-, VLAN, WAN, WLAN.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    многопортовый мост LAN-X.25
    Позволяет объединить через сети коммуникации пакетов Х.25 и Х.75 удаленные ЛВС в интерсеть. Один канал подключения к узлу коммутации пакетов позволяет пользователям ЛВС осуществлять доступ к любой удаленной ЛВС. Основные характеристики многоканальных мостов: подсоединение ЛВС к удаленным ЛВС, установление соединения между мостами с помощью простых команд, работа в выделенном или совмещенном режиме с рабочей станцией ЛВС, подключение к узлу коммутации пакетов по Х.32, работа в большинстве известных сетей.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    • X.25 Multiport bridge
    • LAN

     

    шлюз ЛВС-Х.25
    Со стороны подключения к ЛВС шлюз является одной из ее рабочих станций и для каждого пользователя ЛВС, получающего доступ к информационной сети, создается соответствующий управляющий блок. Со стороны информационной сети шлюз представляет собой ООД и каждому сетевому соединению ЛВС-Х.25 соответствует виртуальное соединение на стыке «шлюз – сеть Х.25». Основные функции шлюза ЛВС-Х.25: преобразование адресов, согласование размеров протокольных блоков данных, скоростей передачи данных, механизмов управления потоком данных, поддержка функций маршрутизации и ряд других процедур.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    • X.25 gateway
    • LAN

    93. Локальная вычислительная сеть

    ЛВС

    Local area network

    LAN

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.

    Примечание. Под небольшой территорией понимают здание, предприятие, учреждение

    Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа

    01.05.24 модель расширенного канала [ extended channel model]: Система кодирования и передачи как байтов с данными сообщения, так и управляющей информации о сообщении, в пределах которой декодер работает в режиме расширенного канала.

    Примечание - Управляющая информация передается с использованием управляющих последовательностей интерпретации в расширенном канале (ECI).

    <2>4 Сокращения1)

    1)Следует учитывать, что в соответствии с оригиналом ИСО/МЭК 19762-1 в данном разделе присутствует сокращение CSMA/CD, которое в тексте стандарта не используется.

    Кроме того, сокращения отсортированы в алфавитном порядке.

    Al

    Идентификатор применения [application identifier]

    ANS

    Американский национальный стандарт [American National Standard]

    ANSI

    Американский национальный институт стандартов [American National Standards Institute]

    ASC

    Аккредитованный комитет по стандартам [Accredited Standards Committee]

    вес

    Контрольный знак блока [block check character]

    BCD

    Двоично-десятичный код (ДДК) [binary coded decimal]

    BER

    Коэффициент ошибок по битам [bit error rate]

    CRC

    Контроль циклическим избыточным кодом [cyclic redundancy check]

    CSMA/CD

    Коллективный доступ с контролем несущей и обнаружением конфликтов [carrier sense multiple access with collision detection network]

    CSUM

    Контрольная сумма [check sum]

    Dl

    Идентификатор данных [data identifier]

    ECI

    Интерпретация в расширенном канале [extended channel interpretation]

    EDI

    Электронный обмен данными (ЭОД) [electronic data interchange]

    EEPROM

    Электрически стираемое программируемое постоянное запоминающее устройство [electrically erasable programmable read only memory]

    HEX

    Шестнадцатеричная система счисления [hexadecimal]

    INCITS

    Международный комитет по стандартам информационных технологий [International Committee for Information Technology Standards]

    LAN

    Локальная вычислительная сеть [local area network]

    Laser

    Усиление света с помощью вынужденного излучения [light amplification by the stimulated emission of radiation]

    LED

    Светоизлучающий диод [light emitting diode]

    LLC

    Управление логической связью [logical link control]

    LSB

    Младший значащий бит [least significant bit]

    МНЮ

    Аккредитованный комитет по отраслевым стандартам в сфере обработки грузов [Accredited Standards Committee for the Material Handling Industry]

    MSB

    Старший значащий бит [most significant bit]

    MTBF

    Средняя наработка на отказ [mean time between failures]

    MTTR

    Среднее время ремонта [mean time to repair]

    NRZ

    Без возвращения к нулю [non-return to zero code]

    NRZ Space

    Кодирование без возвращения к нулю с перепадом на нулях [non-return to zero-space]

    NRZ-1

    Кодирование без возвращения к нулю с перепадом на единицах [non-return to zero invert on ones]

    NRZ-M

    Запись без возвращения к нулю (метка) [non-return to zero (mark) recording]

    RTI

    Возвратное транспортное упаковочное средство [returnable transport item]

    RZ

    Кодирование с возвратом к нулю [return to zero]

    VLD

    Светоизлучающий лазерный диод [visible laser diode]

    <2>Библиография

    [1]

    ИСО/МЭК Руководство 2

    Стандартизация и связанная с ней деятельность. Общий словарь

    (ISO/IECGuide2)

    (Standardization and related activities - General vocabulary)

    [2]

    ИСО/МЭК 2382-1

    Информационные технологии. Словарь - Часть 1. Основные термины

    (ISO/IEC 2382-1)

    (Information technology - Vocabulary - Part 1: Fundamental terms)

    [3]

    ИСО/МЭК 2382-4

    Информационные технологии. Словарь - Часть 4. Организация данных

    (ISO/IEC 2382-4)

    (Information technology - Vocabulary - Part 4: Organization of data)

    [4]

    ИСО/МЭК 2382-9

    Информационные технологии. Словарь. Часть 9. Передача данных

    (ISO/IEC 2382-9)

    (Information technology - Vocabulary - Part 9: Data communication)

    [5]

    ИСО/МЭК 2382-16

    Информационные технологии. Словарь. Часть 16. Теория информации

    (ISO/IEC 2382-16)

    (Information technology - Vocabulary - Part 16: Information theory)

    [6]

    ИСО/МЭК 19762-2

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД)

    (ISO/IEC 19762-2)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 2: Optically readable media (ORM))

    [7]

    ИСО/МЭК 19762-3

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 3. Радиочастотная идентификация (РЧИ)

    (ISO/IEC 19762-3)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 3: Radio frequency identification (RFID)

    [8]

    ИСО/МЭК 19762-4

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 4. Основные термины в области радиосвязи

    (ISO/IEC 19762-4)

     (Information technology-Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 4: General terms relating to radio communications)

    [9]

    ИСО/МЭК 19762-5

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 5. Системы определения места нахождения

    (ISO/IEC 19762-5)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 5: Locating systems)

    [10]

    МЭК 60050-191

    Международный Электротехнический Словарь. Глава 191. Надежность и качество услуг

    (IEC 60050-191)

    (International Electrotechnical Vocabulary - Chapter 191: Dependability and quality of Service)

    [11]

    МЭК 60050-702

    Международный Электротехнический Словарь. Глава 702. Колебания, сигналы и соответствующие устройства

    (IEC 60050-702)

    (International Electrotechnical Vocabulary - Chapter 702: Oscillations, signals and related devices)

    [12]

    МЭК 60050-704

    Международный Электротехнический словарь. Глава 704. Техника передачи

    (IEC 60050-704)

    (International Electrotechnical Vocabulary. Chapter 704: Transmission)

    [13]

    МЭК 60050-845

    Международный электротехнический словарь. Глава 845. Освещение

    (IEC 60050-845)

    (International Electrotechnical Vocabulary - Chapter 845: Lighting)

    <2>

    Источник: ГОСТ Р ИСО/МЭК 19762-1-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 1. Общие термины в области АИСД оригинал документа

    Англо-русский словарь нормативно-технической терминологии > LAN

  • 18 TCB

    1) Task Control Block - блок управления задачей
    таблица, создаваемая ОС при порождении (запуске) задачи или процесса. В различных ОС название и структура этой таблицы может варьироваться. В ТСВ хранятся параметры, необходимые для диспетчеризации задачи, такие, как адрес её стека, границы памяти, приоритет, идентификатор задачи, указатели на другие системные таблицы и очереди и т. д.
    см. тж. task
    2) Transfer (Transmission) Control Block - блок управления передачей
    3) To Call Back - сделать обратный вызов
    4) Trouble Came Back - букв. проблема возвращается (о перемежающейся неисправности компьютера)
    5) встречаются и такие расшифровки этой аббревиатуры: Telecommunication Certification Body - Организация по сертификации в области телекоммуникаций; Terminal Connection Вох - блок соединительный; Trusted Computing Base - проверенная (надёжная) вычислительная система

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > TCB

  • 19 système de conditionnement d'air

    1. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > système de conditionnement d'air

  • 20 Klimaanlage

    1. система кондиционирования воздуха
    2. кондиционирование воздуха (в туристических услугах)
    3. кондиционер воздуха в помещении
    4. камера кондиционирования

     

    камера кондиционирования
    Ндп климатизационная камера
    Камера с установленными температурой и влажностью с целью стабилизации физико-механических показателей выдерживаемых в них древесностружечных плит.
    [ ГОСТ 19506-74]

    Недопустимые, нерекомендуемые

    Тематики

    • плиты древесноволокн. и древесностружеч.

    EN

    DE

     

    кондиционер воздуха в помещении
    Ндп. климатизер
    Агрегат для кондиционирования воздуха в помещении.
    Примечание. Кондиционер воздуха, работающий на наружном воздухе, называется прямоточным, на внутреннем воздухе - рециркуляционным, на смеси наружного и внутреннего воздуха - с рециркуляцией.
    [ ГОСТ 22270-76]

    кондиционер
    Агрегат, предназначенный для кондиционирования воздуха в помещении
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

     

    кондиционирование воздуха
    Искусственная система индивидуальной или централизованной регулировки температуры воздуха, в последнем случае регулировка температуры недоступна для проживающих.
    Примечание
    В последнем случае в номерах отсутствует термостат для индивидуальной регулировки температуры воздуха.
    [ ГОСТ Р 53423-2009]


    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Klimaanlage

См. также в других словарях:

  • Проблема — (др. греч. προβλήμα)  в широком смысле сложный теоретический или практический вопрос, требующий изучения, разрешения; в науке  противоречивая ситуация, выступающая в виде противоположных позиций в объяснении каких либо явлений, объектов …   Википедия

  • Проблема 2000 — года (часто она обозначается как «проблема Y2K» или «Y2K совместимость») проблема, связанная с тем, что разработчики программного обеспечения, выпущенного в XX веке, иногда использовали два знака для представления года в датах, например, 1 января …   Википедия

  • Проблема Y2K — Проблема 2000 года (часто она обозначается как «проблема Y2K» или «Y2K совместимость») проблема, связанная с тем, что разработчики программного обеспечения, выпущенного в XX веке, иногда использовали два знака для представления года в датах,… …   Википедия

  • проблема (в информационных технологиях) — (ITIL Service Operation) Причина одного или нескольких Инцидентов. Обычно при создании записи о проблеме причина неизвестна, и за дальнейшее её расследование отвечает процесс управления проблемами. [Словарь терминов ITIL версия 1.0, 29 июля 2011… …   Справочник технического переводчика

  • Проблема 2000 года — Табло показывает 3 января 1900 года, вместо 3 января 2000 года. Франция …   Википедия

  • Проблема принадлежности южных Курильских островов — Спорные острова с российскими и японскими названиями Проблема принадлежности южных Курильских островов (яп. 北方領土問題 Хоппо: рё:до …   Википедия

  • Проблема 2038 года — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • Управления автоматизированная система — (АСУ)         совокупность экономико математических методов, технических средств (ЭВМ, средств связи, устройств отображения информации, передачи данных и т.д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом… …   Большая советская энциклопедия

  • Проблема 2038 — Пример, показывающий сброс даты (в 03:14:08 UTC 19 января 2038 года). Проблема 2038 года в вычислительной технике ожидаемые сбои в программном обеспечении 19 января 2038 года. Данная проблема затрагивает программы и системы, в которых… …   Википедия

  • Проблема познания людьми друг друга в отечественной психологии — Взаимодействие человека с человеком, в отличие от взаимодействия его с неодушевленным предметом или с живым существом, лишенным сознания и самосознания, имеет субъект субъектный характер, что является значимым основанием для выделения… …   Психология общения. Энциклопедический словарь

  • ПРОБЛЕМА СОЦИАЛЬНАЯ — объективно возникающее в процессе функционирования и развития об ва противоречие; задача, требующая решения средствами соц. управления. П.с. различаются в зависимости от глубины обществ. преобразований, обеспечивающих их решение. Так, существуют… …   Российская социологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»